Logo

Random Matrix Theory, Interacting Particle Systems and Integrable Systems

Large book cover: Random Matrix Theory, Interacting Particle Systems and Integrable Systems

Random Matrix Theory, Interacting Particle Systems and Integrable Systems
by

Publisher: Cambridge University Press
ISBN-13: 9781107079922
Number of pages: 528

Description:
Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications in physics, engineering, multivariate statistics and beyond. The book contains review articles and research contributions on all these topics, in addition to other core aspects of random matrix theory such as integrability and free probability theory.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Linear Algebra Examples C-3: The Eigenvalue Problem and Euclidean Vector SpaceLinear Algebra Examples C-3: The Eigenvalue Problem and Euclidean Vector Space
by - BookBoon
The book is a collection of solved problems in linear algebra, this third volume covers the eigenvalue problem and Euclidean vector space. All examples are solved, and the solutions usually consist of step-by-step instructions.
(10727 views)
Book cover: Introduction to Matrix AlgebraIntroduction to Matrix Algebra
by - University of South Florida
This book is written primarily for students who are at freshman level or do not take a full course in Linear/Matrix Algebra, or wanting a contemporary and applied approach to Matrix Algebra. Eight chapters of the book are available for free.
(15757 views)
Book cover: Natural Product Xn on matricesNatural Product Xn on matrices
by - arXiv
The authors introduce a new type of product on matrices called the natural product Xn - an extension of product in the case or row matrices of the same order. When two matrices of same order can be added, nothing prevents one from multiplying them.
(7378 views)
Book cover: Matrix AnalysisMatrix Analysis
by - Rice University
Matrix theory is a language for representing and analyzing multivariable systems. These notes will demonstrate the role of matrices in the modeling of physical systems and the power of matrix theory in the analysis and synthesis of such systems.
(7424 views)