Logo

Non-locality and Possible World

Large book cover: Non-locality and Possible World

Non-locality and Possible World
by

Publisher: De Gruyter Open
ISBN-13: 9783110323306
Number of pages: 286

Description:
This book uses the formal semantics of counterfactual conditionals to analyze the problem of non-locality in quantum mechanics. Counterfactual conditionals (subjunctive conditionals) enter the analysis of quantum entangled systems in that they enable us to precisely formulate the locality condition that purports to exclude the existence of causal interactions between spatially separated parts of a system.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: The basic paradoxes of statistical classical physics and quantum mechanicsThe basic paradoxes of statistical classical physics and quantum mechanics
by - arXiv
Statistical classical mechanics and quantum mechanics are two developed theories that contain a number of paradoxes. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws.
(14509 views)
Book cover: An Introduction to Many Worlds in Quantum ComputationAn Introduction to Many Worlds in Quantum Computation
by - arXiv
This paper introduces one interpretation of quantum mechanics, a modern 'many-worlds' theory, from the perspective of quantum computation. Reasons for seeking to interpret quantum mechanics are discussed, then the specific theory is introduced.
(14905 views)
Book cover: Overview of Bohmian MechanicsOverview of Bohmian Mechanics
by - arXiv
This chapter provides a comprehensive overview of the Bohmian formulation of quantum mechanics. After a historical review, a formal explanation of Bohmian mechanics for nonrelativistic, single-particle quantum systems is presented.
(9947 views)
Book cover: Quantum MechanicsQuantum Mechanics
by - The University of Texas at Austin
Quantum Mechanics by Richard Fitzpatrick is a complete set of lecture notes for a graduate quantum mechanics course. Topics covered include the fundamentals of quantum mechanics, angular momentum, approximation methods, and scattering theory.
(18360 views)