Logo

Seeing Theory: A visual introduction to probability and statistics

Small book cover: Seeing Theory: A visual introduction to probability and statistics

Seeing Theory: A visual introduction to probability and statistics
by

Publisher: Brown University
Number of pages: 66

Description:
The intent of the website and these notes is to provide an intuitive supplement to an introductory level probability and statistics course. The level is also aimed at students who are returning to the subject and would like a concise refresher on the material.

Home page url

Download or read it online for free here:
Download link
(320KB, PDF)

Similar books

Book cover: Advanced Data Analysis from an Elementary Point of ViewAdvanced Data Analysis from an Elementary Point of View
by - Cambridge University Press
This is a draft textbook on data analysis methods, intended for a one-semester course for advance undergraduate students who have already taken classes in probability, mathematical statistics, and linear regression. It began as the lecture notes.
(11710 views)
Book cover: Reversible Markov Chains and Random Walks on GraphsReversible Markov Chains and Random Walks on Graphs
by - University of California, Berkeley
From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; etc.
(15405 views)
Book cover: A Minimum of Stochastics for ScientistsA Minimum of Stochastics for Scientists
by - Caltech
The book introduces students to the ideas and attitudes that underlie the statistical modeling of physical, chemical, biological systems. The text contains material the author have tried to convey to an audience composed mostly of graduate students.
(12862 views)
Book cover: Introduction to Probability Theory and Statistics for LinguisticsIntroduction to Probability Theory and Statistics for Linguistics
by - UCLA
Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.
(14073 views)