**Geometric Transformation of Finite Element Methods: Theory and Applications**

by M. Holst, M. Licht

**Publisher**: arXiv.org 2018**Number of pages**: 21

**Description**:

We present a new technique to apply finite element methods to partial differential equations over curved domains. Our main result is that a recently developed broken Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove higher-order finite element convergence rates for the parametric problem.

Download or read it online for free here:

**Download link**

(300KB, PDF)

## Similar books

**Lectures on Numerical Analysis**

by

**Dennis Deturck, Herbert S. Wilf**-

**University of Pennsylvania**

Contents: Differential and Difference Equations (Linear equations with constant coefficients, Difference equations, Stability theory); The Numerical Solution of Differential Equations (Euler's method); Numerical linear algebra.

(

**12031**views)

**Templates for the Solution of Linear Systems**

by

**Richard Barrett et al.**-

**Society for Industrial Mathematics**

The book focuses on the use of iterative methods for solving large sparse systems of linear equations. General and reusable templates are introduced to meet the needs of both the traditional user and the high-performance specialist.

(

**16121**views)

**Numerical Methods with Applications**

by

**Autar K Kaw, Egwu Eric Kalu**-

**Lulu.com**

The textbook is written for engineering undergraduates taking a course in numerical methods. It offers a treatise to numerical methods based on a holistic approach and short chapters. The authors included examples of real-life applications.

(

**20379**views)

**Mathematical Computation**

by

**Ian Craw**-

**University of Aberdeen**

The overall aim of the course is to present modern computer programming techniques in the context of mathematical computation and numerical analysis and to foster the independence needed to use these techniques as appropriate in subsequent work.

(

**14581**views)