**The Theory Of Integration**

by L. C. Young

**Publisher**: Cambridge University Press 1927**Number of pages**: 69

**Description**:

In writing this book, I have tried above all to simplify the work of the student. On the one hand, practically no knowledge is assumed (merely what concerns existence of real numbers ,and their symbolism); on the other hand, the ideas of Cauchy, Riemann, Darboux, Weierstrass, familiar to the reader who is acquainted with the elementary theory, are used as much as possible.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**An Introduction to Real Analysis**

by

**John K. Hunter**-

**University of California Davis**

These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.

(

**8511**views)

**Theory of Functions of a Real Variable**

by

**Shlomo Sternberg**

The topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras, etc.

(

**35331**views)

**Set Theoretic Real Analysis**

by

**Krzysztof Ciesielski**-

**Heldermann Verlag**

This text surveys the recent results that concern real functions whose statements involve the use of set theory. The choice of the topics follows the author's personal interest in the subject. Most of the results are left without the proofs.

(

**16102**views)

**Irrational Numbers and Their Representation by Sequences and Series**

by

**Henry Parker Manning**-

**J. Wiley & sons**

This book is intended to explain the nature of irrational numbers, and those parts of Algebra which depend on the theory of limits. We have endeavored to show how the fundamental operations are to be performed in the case of irrational numbers.

(

**6949**views)