Logo

The Mathematical Theory of Relativity

Large book cover: The Mathematical Theory of Relativity

The Mathematical Theory of Relativity
by

Publisher: Cambridge University Press
Number of pages: 448

Description:
Sir Arthur Eddington here formulates mathematically his conception of the world of physics derived from the theory of relativity. The argument is developed in a form which throws light on the origin and significance of the great laws of physics; its consequences are followed to the full extent in the consideration of gravitation, relativity, mechanics, space-time, electromagnetic phenomena and world geometry.

Home page url

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: Advanced General RelativityAdvanced General Relativity
by - King's College London
Contents: Introduction; Manifolds and Tensors; General Relativity (Derivation, Diffeomorphisms as Gauge Symmetries, Weak Field Limit, Tidal Forces, ...); The Schwarzchild Black Hole; More Black Holes; Non-asymptotically Flat Solutions.
(5854 views)
Book cover: Post-Newtonian Theory for the Common ReaderPost-Newtonian Theory for the Common Reader
by - University of Guelph
From the table of contents: Preliminaries; Integration techniques; First post-Minkowskian approximation; Second post-Minkowskian approximation; Equations of motion; Gravitational waves; Energy radiated and radiation reaction.
(5952 views)
Book cover: General RelativityGeneral Relativity
by - lightandmatter.com
This is an undergraduate textbook on general relativity. It is well adapted for self-study, and answers are given in the back of the book for almost all the problems. The ratio of conceptual to mathematical problems is higher than in most books.
(8224 views)
Book cover: An Advanced Course in General RelativityAn Advanced Course in General Relativity
by - University of Guelph
These lecture notes are suitable for a one-semester course at the graduate level. Table of contents: Fundamentals; Geodesic congruences; hypersurfaces; Lagrangian and Hamiltonian formulations of general relativity; Black holes.
(7044 views)