**The Mathematical Theory of Relativity**

by Arthur Stanley Eddington

**Publisher**: Cambridge University Press 1923**Number of pages**: 448

**Description**:

Sir Arthur Eddington here formulates mathematically his conception of the world of physics derived from the theory of relativity. The argument is developed in a form which throws light on the origin and significance of the great laws of physics; its consequences are followed to the full extent in the consideration of gravitation, relativity, mechanics, space-time, electromagnetic phenomena and world geometry.

Download or read it online for free here:

**Download link**

(1.3MB, PDF)

## Similar books

**Schwarzschild and Kerr Solutions of Einstein's Field Equation: an introduction**

by

**Christian Heinicke, Friedrich W. Hehl**-

**arXiv**

Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild solution, and into one specific stationary solution, the Kerr solution.

(

**3931**views)

**Light Rays, Singularities, and All That**

by

**Edward Witten**-

**arXiv.org**

This article is an introduction to causal properties of General Relativity. Topics include the Raychaudhuri equation, singularity theorems of Penrose and Hawking, the black hole area theorem, topological censorship, and the Gao-Wald theorem.

(

**501**views)

**Space, Time and Gravitation: An Outline of the General Relativity Theory**

by

**Arthur Stanley Eddington**-

**Cambridge University Press**

The author gives an account of general relativity theory without introducing anything very technical in the way of mathematics, physics, or philosophy. It is hoped that the book may also appeal to those who have gone into the subject more deeply.

(

**8877**views)

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**17190**views)