Logo

Treatise on Differential Geometry and its role in Relativity Theory

Small book cover: Treatise on Differential Geometry and its role in Relativity Theory

Treatise on Differential Geometry and its role in Relativity Theory
by

Publisher: arXiv.org
Number of pages: 259

Description:
These notes will be helpful to undergraduate and postgraduate students in theoretical physics and in applied mathematics. Modern terminology in differential geometry has been discussed in the book with the motivation of geometrical or pictorial way of thinking. The book shows the wide applicability of differential geometry to relativity theory.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Semi-Riemann Geometry and General RelativitySemi-Riemann Geometry and General Relativity
by
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(19281 views)
Book cover: A Sampler of Riemann-Finsler GeometryA Sampler of Riemann-Finsler Geometry
by - Cambridge University Press
Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles.
(14799 views)
Book cover: Medians and Means in Riemannian Geometry: Existence, Uniqueness and ComputationMedians and Means in Riemannian Geometry: Existence, Uniqueness and Computation
by - arXiv
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.
(10608 views)
Book cover: Lectures on Differential GeometryLectures on Differential Geometry
by - University of California
Foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms.
(12218 views)