Linear Algebra Done Wrong
by Sergei Treil
2004
Number of pages: 222
Description:
The title of the book sounds a bit mysterious. Why should anyone read this book if it presents the subject in a wrong way? What is particularly done "wrong" in the book? Before answering these questions, let me first describe the target audience of this text. This book appeared as lecture notes for the course "Honors Linear Algebra". It supposed to be a first linear algebra course for mathematically advanced students. It is intended for a student who, while not yet very familiar with abstract reasoning, is willing to study more rigorous mathematics that is presented in a "cookbook style" calculus type course. Besides being a first course in linear algebra it is also supposed to be a first course introducing a student to rigorous proof, formal definitions---in short, to the style of modern theoretical (abstract) mathematics. The target audience explains the very specific blend of elementary ideas and concrete examples, which are usually presented in introductory linear algebra texts with more abstract definitions and constructions typical for advanced books.
Download or read it online for free here:
Download link
(1MB, PDF)
Similar books
by Katta G. Murty
A sophomore level book on linear algebra and n-dimensional geometry with the aim of developing in college entering undergraduates skills in algorithms, computational methods, and mathematical modeling. Written in a simple style with lots of examples.
(15597 views)
by Peter Saveliev
This is a textbook for a one-semester course in linear algebra and vector spaces. An emphasis is made on the coordinate free analysis. The course mimics in some ways a modern algebra course. Calculus is a prerequisite for the course.
(8269 views)
by Robert A. Beezer - University of Puget Sound
Introductory textbook for college-level sophomores and juniors. It covers systems of linear equations, matrix algebra, finite-dimensional vector spaces, matrix representations of linear transformations, diagonalization, Jordan canonical form, etc.
(54530 views)
by Paul Dawkins - Lamar University
These topics are covered: Systems of Equations and Matrices; Determinants; Euclidean n-space; Vector Spaces; Eigenvalues and Eigenvectors. These notes do assume that the reader has a good working knowledge of basic Algebra.
(18484 views)