Logo

Tensor Trigonometry by A.S. Ninul

Large book cover: Tensor Trigonometry

Tensor Trigonometry
by

Publisher: FIZMATLIT
ISBN/ASIN: 5940522785
ISBN-13: 9785940522782
Number of pages: 320

Description:
The tensor trigonometry is development of the flat scalar trigonometry from Leonard Euler classic forms into general multi-dimensional tensor forms with vector and scalar orthoprojections and with step by step increasing complexity and opportunities. Described in the book are fundamentals of this new mathematical subject with many initial examples of its applications.

Home page url

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: A Gentle Introduction to TensorsA Gentle Introduction to Tensors
by - Technion
The book discusses constant tensors and constant linear transformations, tensor fields and curvilinear coordinates, and extends tensor theory to spaces other than vector spaces, namely manifolds. Written for the benefits of Engineering students.
(10533 views)
Book cover: Symbolic Tensor Calculus on Manifolds: a SageMath ImplementationSymbolic Tensor Calculus on Manifolds: a SageMath Implementation
by - arXiv.org
These lecture notes present a method for symbolic tensor calculus that runs on fully specified smooth manifolds (described by an atlas), that is not limited to a single coordinate chart or vector frame, and runs even on non-parallelizable manifolds.
(5837 views)
Book cover: Quick Introduction to Tensor AnalysisQuick Introduction to Tensor Analysis
by - Samizdat Press
The author gives only a draft of tensor theory, he formulates definitions and theorems and gives basic ideas and formulas. Proving consistence of definitions, deriving formulas, proving theorems or completing details to proofs is left to the reader.
(16900 views)
Book cover: Introduction to Vectors and Tensors Volume 2: Vector and Tensor AnalysisIntroduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis
by
The textbook presents introductory concepts of vector and tensor analysis, suitable for a one-semester course. Volume II discusses Euclidean Manifolds followed by the analytical and geometrical aspects of vector and tensor fields.
(20393 views)