Logo

Machine Learning: A Probabilistic Perspective

Large book cover: Machine Learning: A Probabilistic Perspective

Machine Learning: A Probabilistic Perspective
by

Publisher: The MIT Press
ISBN-13: 9780262018029
Number of pages: 1098

Description:
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.

Home page url

Download or read it online for free here:
Download link
(46MB, PDF)

Similar books

Book cover: Machine Learning for Data StreamsMachine Learning for Data Streams
by - The MIT Press
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA, allowing readers to try out the techniques after reading the explanations.
(7011 views)
Book cover: Statistical Learning and Sequential PredictionStatistical Learning and Sequential Prediction
by - University of Pennsylvania
This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...
(6990 views)
Book cover: Introduction to Machine LearningIntroduction to Machine Learning
by - arXiv
Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).
(22894 views)
Book cover: Elements of Causal Inference: Foundations and Learning AlgorithmsElements of Causal Inference: Foundations and Learning Algorithms
by - The MIT Press
This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...
(6610 views)