**Machine Learning: A Probabilistic Perspective**

by Kevin Patrick Murphy

**Publisher**: The MIT Press 2012**ISBN-13**: 9780262018029**Number of pages**: 1098

**Description**:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.

Download or read it online for free here:

**Download link**

(46MB, PDF)

## Similar books

**Machine Learning for Data Streams**

by

**Albert Bifet, et al.**-

**The MIT Press**

This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA, allowing readers to try out the techniques after reading the explanations.

(

**7011**views)

**Statistical Learning and Sequential Prediction**

by

**Alexander Rakhlin, Karthik Sridharan**-

**University of Pennsylvania**

This text focuses on theoretical aspects of Statistical Learning and Sequential Prediction. The minimax approach, which we emphasize throughout the course, offers a systematic way of comparing learning problems. We will discuss learning algorithms...

(

**6990**views)

**Introduction to Machine Learning**

by

**Amnon Shashua**-

**arXiv**

Introduction to Machine learning covering Statistical Inference (Bayes, EM, ML/MaxEnt duality), algebraic and spectral methods (PCA, LDA, CCA, Clustering), and PAC learning (the Formal model, VC dimension, Double Sampling theorem).

(

**22894**views)

**Elements of Causal Inference: Foundations and Learning Algorithms**

by

**J. Peters, D. Janzing, B. Schölkopf**-

**The MIT Press**

This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...

(

**6610**views)