Machine Learning: A Probabilistic Perspective
by Kevin Patrick Murphy
Publisher: The MIT Press 2012
ISBN-13: 9780262018029
Number of pages: 1098
Description:
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms.
Download or read it online for free here:
Download link
(46MB, PDF)
Similar books

by David Barber - Cambridge University Press
The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.
(24033 views)

by Albert Bifet, et al. - The MIT Press
This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA, allowing readers to try out the techniques after reading the explanations.
(7448 views)

by C. Weber, M. Elshaw, N. M. Mayer - InTech
This book describes and extends the scope of reinforcement learning. It also shows that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional controllers.
(22469 views)

by D. Michie, D. J. Spiegelhalter - Ellis Horwood
The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.
(29531 views)