**Information Theory, Inference, and Learning Algorithms**

by David J. C. MacKay

**Publisher**: Cambridge University Press 2003**ISBN/ASIN**: 0521642981**ISBN-13**: 9780521642989**Number of pages**: 640

**Description**:

Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Quantum Information Theory**

by

**Renato Renner**-

**ETH Zurich**

Processing of information is necessarily a physical process. It is not surprising that physics and the theory of information are inherently connected. Quantum information theory is a research area whose goal is to explore this connection.

(

**12479**views)

**Information Theory and Statistical Physics**

by

**Neri Merhav**-

**arXiv**

Lecture notes for a graduate course focusing on the relations between Information Theory and Statistical Physics. The course is aimed at EE graduate students in the area of Communications and Information Theory, or graduate students in Physics.

(

**12782**views)

**Information and Coding**

by

**Karl Petersen**-

**AMS**

The aim is to review the many facets of information, coding, and cryptography, including their uses throughout history and their mathematical underpinnings. Prerequisites included high-school mathematics and willingness to deal with unfamiliar ideas.

(

**5884**views)

**Entropy and Information Theory**

by

**Robert M. Gray**-

**Springer**

The book covers the theory of probabilistic information measures and application to coding theorems for information sources and noisy channels. This is an up-to-date treatment of traditional information theory emphasizing ergodic theory.

(

**17157**views)