**Arithmetic Duality Theorems**

by J.S. Milne

**Publisher**: BookSurge Publishing 2006**ISBN/ASIN**: 141964274X**ISBN-13**: 9781419642746**Number of pages**: 347

**Description**:

The book deals with duality theorems in Galois, étale and flat cohomology, for local and global fields, as well as the corresponding rings of integers. Also covered are results about cohomological dimension, finiteness and Euler-Poincaré characteristics. It can serve as a good general reference for these questions.

Download or read it online for free here:

**Download link**

(2MB, PDF)

## Similar books

**Modular Forms, Hecke Operators, and Modular Abelian Varieties**

by

**Kenneth A. Ribet, William A. Stein**-

**University of Washington**

Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences...

(

**8992**views)

**A set of new Smarandache functions, sequences and conjectures in number theory**

by

**Felice Russo**-

**American Research Press**

The fascinating Smarandache's universe is halfway between the recreational mathematics and the number theory. This book presents new Smarandache functions, conjectures, solved and unsolved problems, new type sequences and new notions in number theory.

(

**11916**views)

**Introduction to Shimura Varieties**

by

**J.S. Milne**

This is an introduction to the theory of Shimura varieties, or, in other words, to the arithmetic theory of automorphic functions and holomorphic automorphic forms. Because of their brevity, many proofs have been omitted or only sketched.

(

**8465**views)

**Predicative Arithmetic**

by

**Edward Nelson**-

**Princeton Univ Pr**

The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.

(

**16722**views)