**Arithmetic Duality Theorems**

by J.S. Milne

**Publisher**: BookSurge Publishing 2006**ISBN/ASIN**: 141964274X**ISBN-13**: 9781419642746**Number of pages**: 347

**Description**:

The book deals with duality theorems in Galois, étale and flat cohomology, for local and global fields, as well as the corresponding rings of integers. Also covered are results about cohomological dimension, finiteness and Euler-Poincaré characteristics. It can serve as a good general reference for these questions.

Download or read it online for free here:

**Download link**

(2MB, PDF)

## Similar books

**Topics in the Theory of Quadratic Residues**

by

**Steve Wright**-

**arXiv**

Beginning with Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study ...

(

**7165**views)

**Harmonic Analysis, the Trace Formula, and Shimura Varieties**

by

**J. Arthur, D. Ellwood, R. Kottwitz**-

**American Mathematical Society**

The goal of this volume is to provide an entry point into the challenging field of the modern theory of automorphic forms. It is directed on the one hand at graduate students and professional mathematicians who would like to work in the area.

(

**11745**views)

**Collections of Problems on Smarandache Notions**

by

**Charles Ashbacher**-

**Erhus University Press**

This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.

(

**16480**views)

**Geometry of Numbers with Applications to Number Theory**

by

**Pete L. Clark**-

**University of Georgia**

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.

(

**9250**views)