Logo

Isometrica: A Geometrical Introduction to Planar Crystallographic Groups

Small book cover: Isometrica: A Geometrical Introduction to Planar Crystallographic Groups

Isometrica: A Geometrical Introduction to Planar Crystallographic Groups
by


ISBN-13: 9780979207600
Number of pages: 473

Description:
Donald Crowe's 'repeated patterns', may certainly be viewed as one of the very first mathematical creations of humankind. They are recognized today as the poor relatives of the planar crystallographic groups. This book's goal is therefore the gradual unveiling of the structural and the mathematical that hides behind the visual and the artistic. A determined reader can read the entire book relying only on some high school mathematics.

Home page url

Download or read it online for free here:
Download link
(7.3MB, PDF)

Similar books

Book cover: Euclid's ElementsEuclid's Elements
by
Online edition of Euclid's Elements, one of the most beautiful and influential works of science in the history of humankind. The text of all 13 Books is complete, and all of the figures are illustrated using a Java applet called the Geometry Applet.
(16873 views)
Book cover: The First Six Books of the Elements of EuclidThe First Six Books of the Elements of Euclid
by - Longmans, Green, and Co.
This edition of the Elements of Euclid is intended to supply a want much felt by teachers at the present day - the production of a work which, while giving the original in all its integrity, would also contain the modern conceptions and developments.
(13038 views)
Book cover: First Principles of Symmetrical BeautyFirst Principles of Symmetrical Beauty
by - W. Blackwood and sons
From the table of contents: Nature of the science of aesthetics explained; Plane figures the bases of all forms; The isosceles triangle; Universal application of the composite ellipse in the arts of ornamental design; and more.
(14353 views)
Book cover: The Foundations of GeometryThe Foundations of Geometry
by - Project Gutenberg
Axioms were uncovered in Euclid's geometry. These discoveries were organized into a more rigorous axiomatic system by David Hilbert in his Grundlagen der Geometrie (1899) which contained his definitive set of axioms for Euclidean geometry.
(17225 views)