Logo

Lecture Notes on General Relativity

Small book cover: Lecture Notes on General Relativity

Lecture Notes on General Relativity
by

Publisher: University of California
Number of pages: 238

Description:
These notes represent approximately one semester's worth of lectures on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein’s equations, and three applications: gravitational radiation, black holes, and cosmology.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Gravitational Waves and Black Holes: an Introduction to General RelativityGravitational Waves and Black Holes: an Introduction to General Relativity
by - arXiv
General relativity is outlined as the classical field theory of gravity, emphasizing physical phenomena rather than mathematical formalism. Dynamical solutions representing traveling waves and stationary fields of black holes are discussed.
(12626 views)
Book cover: Gravitational Waves, Sources, and DetectorsGravitational Waves, Sources, and Detectors
by - arXiv
Notes of lectures for graduate students, covering the theory of linearized gravitational waves, their sources, and the prospects at the time for detecting gravitational waves. The lectures remain of interest for pedagogical reasons.
(9351 views)
Book cover: Space, Time and Gravitation: An Outline of the General Relativity TheorySpace, Time and Gravitation: An Outline of the General Relativity Theory
by - Cambridge University Press
The author gives an account of general relativity theory without introducing anything very technical in the way of mathematics, physics, or philosophy. It is hoped that the book may also appeal to those who have gone into the subject more deeply.
(13182 views)
Book cover: Mathematical RelativityMathematical Relativity
by - arXiv
These are lecture notes written for a one-semester course in mathematical relativity aimed at mathematics and physics students. Not meant as an introduction to general relativity, but rather as a complementary, more advanced text.
(908 views)