Logo

Lecture Notes on General Relativity

Small book cover: Lecture Notes on General Relativity

Lecture Notes on General Relativity
by

Publisher: University of California
Number of pages: 238

Description:
These notes represent approximately one semester's worth of lectures on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein’s equations, and three applications: gravitational radiation, black holes, and cosmology.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Light Rays, Singularities, and All ThatLight Rays, Singularities, and All That
by - arXiv.org
This article is an introduction to causal properties of General Relativity. Topics include the Raychaudhuri equation, singularity theorems of Penrose and Hawking, the black hole area theorem, topological censorship, and the Gao-Wald theorem.
(4677 views)
Book cover: Space, Time and Gravitation: An Outline of the General Relativity TheorySpace, Time and Gravitation: An Outline of the General Relativity Theory
by - Cambridge University Press
The author gives an account of general relativity theory without introducing anything very technical in the way of mathematics, physics, or philosophy. It is hoped that the book may also appeal to those who have gone into the subject more deeply.
(13431 views)
Book cover: Mass and Angular Momentum in General RelativityMass and Angular Momentum in General Relativity
by - arXiv
We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries.
(9629 views)
Book cover: Dynamical and Hamiltonian Formulation of General RelativityDynamical and Hamiltonian Formulation of General Relativity
by - arXiv.org
This text introduces the reader to the reformulation of Einstein's field equations of General Relativity as a constrained evolutionary system of Hamiltonian type and discusses some of its uses, together with some technical and conceptual aspects.
(5970 views)