Logo

Gravitational Waves, Sources, and Detectors

Small book cover: Gravitational Waves, Sources, and Detectors

Gravitational Waves, Sources, and Detectors
by

Publisher: arXiv
Number of pages: 82

Description:
Notes of lectures for graduate students that were given at Lake Como in 1999, covering the theory of linearized gravitational waves, their sources, and the prospects at the time for detecting gravitational waves. The lectures remain of interest for pedagogical reasons, and in particular because they contain a treatment of current-quadrupole gravitational radiation that is not readily available in other sources.

Home page url

Download or read it online for free here:
Download link
(880KB, PDF)

Similar books

Book cover: Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equationsBeyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations
by - arXiv
This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.
(13608 views)
Book cover: Gravitational WavesGravitational Waves
by - arXiv
Gravitational-wave (GW) science has entered a new era. Theoretically, the last years have been characterized by numerous major advances. These lectures are envisioned to be an introductory, basic course in gravitational-wave physics.
(11350 views)
Book cover: The Mathematical Theory of RelativityThe Mathematical Theory of Relativity
by - Cambridge University Press
Sir Arthur Eddington here formulates mathematically his conception of the world of physics derived from the theory of relativity. The argument is developed in a form which throws light on the origin and significance of the great laws of physics.
(5658 views)
Book cover: Introduction to Differential Geometry and General RelativityIntroduction to Differential Geometry and General Relativity
by
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(22646 views)