**Operator Algebras and Quantum Statistical Mechanics**

by Ola Bratteli, Derek W. Robinson

**Publisher**: Springer 2003**ISBN/ASIN**: 3540170936**ISBN-13**: 9783540170938**Number of pages**: 505

**Description**:

These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis.

Download or read it online for free here:

**Read online**

(online preview)

## Similar books

**Linear Functional Analysis**

by

**W W L Chen**-

**Macquarie University**

An introduction to the basic ideas in linear functional analysis: metric spaces; connectedness, completeness and compactness; normed vector spaces; inner product spaces; orthogonal expansions; linear functionals; linear transformations; etc.

(

**16371**views)

**An Introduction to Hilbert Module Approach to Multivariable Operator Theory**

by

**Jaydeb Sarkar**-

**arXiv**

An introduction of Hilbert modules over function algebras. The theory of Hilbert modules is presented as combination of commutative algebra, complex geometry and Hilbert spaces and its applications to the theory of n-tuples of commuting operators.

(

**7524**views)

**Hilbert Spaces and Operators on Hilbert Spaces**

by

**Leif Mejlbro**-

**BookBoon**

Functional analysis examples. From the table of contents: Hilbert spaces; Fourier series; Construction of Hilbert spaces; Orthogonal projections and complements; Weak convergence; Operators on Hilbert spaces, general; Closed operations.

(

**13040**views)

**Basic Analysis Gently Done: Topological Vector Spaces**

by

**Ivan F. Wilde**-

**King's College, London**

These notes are based on lectures given as part of a mathematics MSc program. The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; etc.

(

**11275**views)