Geometry Unbound
by Kiran S. Kedlaya
2006
Number of pages: 142
Description:
The original text underlying this book was a set of notes for the Math Olympiad Program, the annual summer program to prepare U.S. high school students for the International Mathematical Olympiad. The original notes were intended to bridge the gap between the knowledge of Euclidean geometry of American IMO prospects and that of their counterparts from other countries. They included a large number of challenging problems culled from Olympiad-level competitions from around the world. In revising the old text, author attempted to usher the reader from Euclidean geometry to the gates of "geometry" as the term is defined by modern mathematicians, using the solving of routine and nonroutine problems as the vehicle for discovery.
Download or read it online for free here:
Download link
(0.6MB, PDF)
Similar books

by Eckart Viehweg - Springer
This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms.
(10602 views)

by Ralph Howard - Royal Institute of Technology Stockholm
The main goal of these notes is to give a proof of the basic facts of harmonic analysis on compact symmetric spaces and then to apply these to concrete problems involving things such as the Radon and related transforms on these spaces.
(8113 views)

by Jean-Pierre Demailly - Universite de Grenoble
Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.
(16947 views)

by Claude Sabbah - arXiv
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.
(9450 views)