subcategories
K-theory (7)
e-books in Algebraic Geometry category
by Gwyn Bellamy, et al. - Cambridge University Press , 2016
This book provides an introduction to some of the most significant topics in this area, including noncommutative projective algebraic geometry, deformation theory, symplectic reflection algebras, and noncommutative resolutions of singularities.
(6190 views)
by A. Clement Jones - Oxford University Press , 1912
The author's aim has been to produce a book suitable to the beginner who wishes to acquire a sound knowledge of the more elementary parts of the subject, and also sufficient for the candidate for a mathematical scholarship.
(6878 views)
by Miroslav Josipovic - viXra , 2016
This text is a motivational survey of geometric algebra in 3D. The intention here was to use simple examples and reader is referred to the independent problem solving. The active reading of text is recommended, with paper and pencil in hand.
(7040 views)
by Olivia Dumitrescu, Motohico Mulase - arXiv , 2015
The paper aims at giving an introduction to the notion of quantum curves. The main purpose is to describe the discovery of the relation between the topological recursion and the quantization of Hitchin spectral curves associated with Higgs bundles.
(6546 views)
by Tadao Oda - Springer , 1988
The theory of toric varieties describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications ...
(7357 views)
by Robin Hartshorne - Springer , 1970
These notes are an enlarged version of a three-month course of lectures. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.
(8458 views)
by H.F. Baker - Cambridge University Press , 1897
This classic book covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today.
(8191 views)
by J.M. Landsberg - arXiv , 2013
This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory. The article is written to be accessible to graduate students. Numerous open questions are presented.
(9064 views)
by Sudhir R. Ghorpade - Indian Institute of Technology Bombay , 2007
This text is a brief introduction to algebraic geometry. We will focus mainly on two basic results in algebraic geometry, known as Bezout's Theorem and Hilbert's Nullstellensatz, as generalizations of the Fundamental Theorem of Algebra.
(10376 views)
by Pierre Schapira - UPMC , 2012
The aim of these lecture notes is first to introduce the reader to the theory of D-modules in the analytical setting and also to make a link with the theory of deformation quantization (DQ for short) in the complex setting.
(7347 views)
by Igor V. Dolgachev - Cambridge University Press , 2012
The main purpose of the present treatise is to give an account of some of the topics in algebraic geometry which while having occupied the minds of many mathematicians in previous generations have fallen out of fashion in modern times.
(9207 views)
by Caucher Birkar - arXiv , 2012
Topics covered: introduction into the subject, contractions and extremal rays, pairs and singularities, Kodaira dimension, minimal model program, cone and contraction, vanishing, base point freeness, flips and local finite generation, etc.
(8829 views)
by D. Gieseker - Tata Institute of Fundamental Research , 1982
These lecture notes are based on some lectures given in 1980. The object of the lectures was to construct a projective moduli space for stable curves of genus greater than or equal two using Mumford's geometric invariant theory.
(9703 views)
by Masayoshi Miyanishi - Tata Institute of Fundamental Research , 1978
From the table of contents: Introduction; Geometry of the affine line (Locally nilpotent derivations, Algebraic pencils of affine lines, Flat fibrations by the affine line); Curves on an affine rational surface; Unirational surfaces; etc.
(9758 views)
by Tadao Oda - Tata Institute of Fundamental Research , 1978
Theory of torus embeddings has find many applications. The point of the theory lies in its ability of translating meaningful algebra-geometric phenomena into very simple statements about the combinatorics of cones in affine space over the reals.
(10787 views)
by S.S. Abhyankar - Tata Institute Of Fundamental Research , 1977
From the table of contents: Meromorphic Curves; G-Adic Expansion and Approximate Roots; Characteristic Sequences of a Meromorphic Curve; The Fundamental Theorem and applications; Irreducibility, Newton's Polygon; The Jacobian Problem.
(9538 views)
by Michael Artin - Tata Institute of Fundamental Research , 1976
These notes are based on a series of lectures given in 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.
(9251 views)
by J.P. Murre - Tata Institute of Fundamental Research , 1967
The purpose of this text is to give an introduction to Grothendieck's theory of the fundamental group in algebraic geometry with the study of the fundamental group of an algebraic curve over an algebraically closed field of arbitrary characteristic.
(10672 views)
by P. Samuel - Tata Institute Of Fundamental Research , 1966
The aim of this text is to give a proof, due to Hans Grauert, of an analogue of Mordell's conjecture. Contents: Introduction; Algebro-Geometric Background; Algebraic Curves; The Theorem of Grauert (Mordell's conjecture for function fields).
(9944 views)
by Johan de Jong, et al. , 2012
The stacks project aims to build up enough basic algebraic geometry as foundations for algebraic stacks. This implies a good deal of theory on commutative algebra, schemes, varieties, algebraic spaces, has to be developed en route.
(11428 views)
by Winfried Bruns, Udo Vetter - Springer , 1988
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.
(11715 views)
by U. Bruzzo , 2008
Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.
(11479 views)
by H. Maass - Tata Institute of Fundamental Research , 1955
Contents: Modular Group of Degree n; Symplectic group of degree n; Reduction Theory of Positive Definite Quadratic Forms; Fundamental Domain of the Modular Group of Degree n; Modular Forms of Degree n; Algebraic dependence of modular forms; etc.
(11527 views)
by Ralph Howard - Royal Institute of Technology Stockholm , 1994
The main goal of these notes is to give a proof of the basic facts of harmonic analysis on compact symmetric spaces and then to apply these to concrete problems involving things such as the Radon and related transforms on these spaces.
(9082 views)
by M. Douglas, J. Gauntlett, M. Gross - American Mathematical Society , 2004
This volume highlights the interface between string theory and algebraic geometry. The topics covered include manifolds of special holonomy, supergravity, supersymmetry, D-branes, the McKay correspondence and the Fourier-Mukai transform.
(14139 views)
by Cumrun Vafa, Eric Zaslow - American Mathematical Society , 2003
The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.
(14266 views)
by Alexander Kleshchev - University of Oregon , 2005
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(13527 views)
by S. Basu, R. Pollack, M. Roy - Springer , 2009
The monograph gives a detailed exposition of the algorithmic real algebraic geometry. It is well written and will be useful both for beginners and for advanced readers, who work in real algebraic geometry or apply its methods in other fields.
(18623 views)
by Claude Sabbah - arXiv , 2010
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.
(10424 views)
by Robert Hermann - Math Sci Press , 1974
Systems theory offers a unified mathematical framework to solve problems in a wide variety of fields. This mathematics is not of the traditional sort involved in engineering education, but involves virtually every field of modern mathematics.
(14979 views)
by D. Eisenbud, D. Grayson, M. Stillman, B. Sturmfels - Springer , 2001
This book presents algorithmic tools for algebraic geometry and experimental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out.
(12167 views)
by J. S. Milne , 2008
Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.
(12981 views)
by J. S. Milne , 2009
This is an introduction to the arithmetic theory of modular functions and modular forms, with an emphasis on the geometry. Prerequisites are the algebra and complex analysis usually covered in advanced undergraduate or first-year graduate courses.
(13140 views)
by Enrique Arrondo - Universidad Complutense de Madrid , 2007
The scope of these notes is to present a soft and practical introduction to algebraic geometry, i.e. with very few algebraic requirements but arriving soon to deep results and concrete examples that can be obtained 'by hand'.
(10624 views)
by Michel Coste - Universite de Rennes , 2002
Semialgebraic geometry is the study of sets of real solutions of systems of polynomial equations and inequalities. These notes present the first results of semialgebraic geometry and related algorithmic issues. Their content is by no means original.
(13456 views)
by Chris Peters - Institut Fourier Grenoble , 2004
This is an advanced course in complex algebraic geometry presupposing only some familiarity with theory of algebraic curves or Riemann surfaces. The goal is to understand the Enriques classification of surfaces from the point of view of Mori-theory.
(11096 views)
by Arthur Ogus - University of California, Berkeley , 2006
Logarithmic geometry deals with two problems in algebraic geometry: compactification and degeneration. Contents: The geometry of monoids; Log structures and charts; Morphisms of log schemes; Differentials and smoothness; De Rham and Betti cohomology.
(14351 views)
by Donu Arapura - Purdue University , 2009
Algebraic geometry is the geometric study of sets of solutions to polynomial equations over a field (or ring). In this book the author maintains a reasonable balance between rigor and intuition; so it retains the informal quality of lecture notes.
(13814 views)
by Yuriy Drozd , 1999
From the table of contents: Affine Varieties; Ideals and varieties. Hilbert's Basis Theorem. Regular functions and regular mappings. Projective and Abstract Varieties; Dimension Theory; Regular and singular points; Intersection theory.
(12520 views)
by Andreas Gathmann - University of Kaiserslautern , 2014
From the contents: Introduction; Affine varieties; Functions, morphisms, and varieties; Projective varieties; Dimension; Schemes; First applications of scheme theory; More about sheaves; Cohomology of sheaves; Intersection theory; Chern classes.
(15101 views)
by Herbert Clemens, János Kollár - Cambridge University Press , 1996
The 1992/93 year at the Mathematical Sciences Research Institute was devoted to Complex Algebraic Geometry. This volume collects articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change.
(14463 views)
by Armand Borel, George D. Mostow - American Mathematical Society , 1966
The book covers linear algebraic groups and arithmetic groups, adeles and arithmetic properties of algebraic groups, automorphic functions and spectral decomposition of L2-spaces, vector valued cohomology and deformation of discrete subgroups, etc.
(14854 views)
by Marc Levine - American Mathematical Society , 1998
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(15624 views)
by Eckart Viehweg - Springer , 1995
This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms.
(11777 views)
by J.S. Milne , 2008
These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.
(16015 views)
by Joseph M. Landsberg - arXiv , 1998
Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.
(16419 views)
by Jean-Pierre Demailly - Universite de Grenoble , 2007
Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.
(18743 views)
by William Fulton - Benjamin , 1969
These notes develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. It assumed that the reader is familiar with some basic properties of rings, ideals, and polynomials.
(16030 views)
by Dmitri A. Timashev - arXiv , 2006
A monograph on homogeneous spaces of algebraic groups and their equivariant embeddings. Some results are supplied with proofs, the other are cited with references to the original papers. The style is intermediate between survey and detailed monograph.
(12430 views)
by Kiran S. Kedlaya , 2006
This is not a typical math textbook, it does not present full developments of key theorems, but it leaves strategic gaps in the text for the reader to fill in. The original text underlying this book was a set of notes for the Math Olympiad Program.
(16545 views)