CDBooK: Introduction to Vassiliev Knot invariants
by S.Chmutov, S.Duzhin, J.Mostovoy
Publisher: Ohio State Universit 2009
Number of pages: 460
Description:
This text provides an introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. It is intended for readers with no or little background in this area, and we care more about a clear explanation of the basic notions and constructions than about widening the exposition to more recent and more advanced material.
Download or read it online for free here:
Download link
(6.7MB, PDF)
Similar books

by Ben Webster - arXiv
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...
(7814 views)

by S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein - arXiv
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
(9112 views)

by Andrew Ranicki - arXiv
Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory.
(11407 views)

by J. P. May - Springer
The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.
(12684 views)