Logo

Algebraic and Geometric Surgery

Large book cover: Algebraic and Geometric Surgery

Algebraic and Geometric Surgery
by

Publisher: Oxford University Press
ISBN/ASIN: 0198509243
ISBN-13: 9780198509240
Number of pages: 380

Description:
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds.

Home page url

Download or read it online for free here:
Download link
(2MB, PDF)

Similar books

Book cover: A Primer on Homotopy ColimitsA Primer on Homotopy Colimits
by - University of Oregon
This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.
(10762 views)
Book cover: Topics in topology: The signature theorem and some of its applicationsTopics in topology: The signature theorem and some of its applications
by - University of Notre Dame
The author discusses several exciting topological developments which radically changed the way we think about many issues. Topics covered: Poincare duality, Thom isomorphism, Euler, Chern and Pontryagin classes, cobordisms groups, signature formula.
(10565 views)
Book cover: Topological Groups: Yesterday, Today, TomorrowTopological Groups: Yesterday, Today, Tomorrow
by - MDPI AG
The aim of this book is to describe significant topics in topological group theory in the early 21st century as well as providing some guidance to the future directions topological group theory might take by including some interesting open questions.
(6861 views)
Book cover: Prerequisites in Algebraic TopologyPrerequisites in Algebraic Topology
by - NTNU
This is not an introductory textbook in algebraic topology, these notes attempt to give an overview of the parts of algebraic topology, and in particular homotopy theory, which are needed in order to appreciate that side of motivic homotopy theory.
(12125 views)