**Proofs and Concepts: the fundamentals of abstract mathematics**

by Dave Witte Morris, Joy Morris

**Publisher**: University of Lethbridge 2009**Number of pages**: 220

**Description**:

This free undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics, but it is also suitable for independent study by undergraduates (or mathematically mature high-school students), or for use as a very inexpensive supplement to undergraduate courses in any field of abstract mathematics.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**A Introduction to Proofs and the Mathematical Vernacular**

by

**Martin Day**-

**Virginia Tech**

The book helps students make the transition from freshman-sophomore calculus to more proof-oriented upper-level mathematics courses. Another goal is to train students to read more involved proofs they may encounter in textbooks and journal articles.

(

**22391**views)

**An Introduction to Higher Mathematics**

by

**Patrick Keef, David Guichard, Russ Gordon**-

**Whitman College**

Contents: Logic (Logical Operations, De Morgan's Laws, Logic and Sets); Proofs (Direct Proofs, Existence proofs, Mathematical Induction); Number Theory (The Euclidean Algorithm); Functions (Injections and Surjections, Cardinality and Countability).

(

**16010**views)

**Mathematical Reasoning: Writing and Proof**

by

**Ted Sundstrom**-

**Pearson Education, Inc.**

'Mathematical Reasoning' is designed to be a text for the first course in the college mathematics curriculum that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics.

(

**14375**views)

**Fundamental Concepts of Mathematics**

by

**Farshid Hajir**-

**University of Massachusetts**

Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.

(

**19690**views)