Geometric Models for Noncommutative Algebra
by Ana Cannas da Silva, Alan Weinstein
Publisher: University of California at Berkeley 1998
Number of pages: 194
Description:
Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, like the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this book, we discuss several types of geometric objects which are closely related to noncommutative algebras.
Download or read it online for free here:
Download link
(3.3MB, PDF)
Similar books

by Travis Schedler - arXiv
In these notes, we give an example-motivated review of the deformation theory of associative algebras in terms of the Hochschild cochain complex as well as quantization of Poisson structures, and Kontsevich's formality theorem in the smooth setting.
(7042 views)

by Igor Nikolaev - arXiv
The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. Intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts.
(7030 views)

by Masoud Khalkhali - University of Western Ontario
Contents: Introduction; Some examples of geometry-algebra correspondence; Noncommutative quotients; Cyclic cohomology; Chern-Connes character; Banach and C*-algebras; Idempotents and finite projective modules; Equivalence of categories.
(8492 views)

by Giovanni Landi - arXiv
These lectures notes are an introduction for physicists to several ideas and applications of noncommutative geometry. The necessary mathematical tools are presented in a way which we feel should be accessible to physicists.
(13350 views)