Geometric Models for Noncommutative Algebra
by Ana Cannas da Silva, Alan Weinstein
Publisher: University of California at Berkeley 1998
Number of pages: 194
Description:
Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, like the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this book, we discuss several types of geometric objects which are closely related to noncommutative algebras.
Download or read it online for free here:
Download link
(3.3MB, PDF)
Similar books

by Giovanni Landi - arXiv
These lectures notes are an introduction for physicists to several ideas and applications of noncommutative geometry. The necessary mathematical tools are presented in a way which we feel should be accessible to physicists.
(12138 views)

by Nigel Higson, John Roe - American Mathematical Society
These lectures are intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Topics: applications of noncommutative geometry to problems in ordinary geometry and topology, residue index theorem, etc.
(9618 views)

by Travis Schedler - arXiv
In these notes, we give an example-motivated review of the deformation theory of associative algebras in terms of the Hochschild cochain complex as well as quantization of Poisson structures, and Kontsevich's formality theorem in the smooth setting.
(5995 views)

by Thierry Masson - arXiv
This is an extended version of a three hours lecture given at the 6th Peyresq meeting 'Integrable systems and quantum field theory'. We make an overview of some of the mathematical results which motivated the development of noncommutative geometry.
(9415 views)