Logo

Von Neumann Algebras by Vaughan F. R. Jones

Small book cover: Von Neumann Algebras

Von Neumann Algebras
by

Publisher: UC Berkeley Mathematics
Number of pages: 159

Description:
The purpose of these notes is to provide a rapid introduction to von Neumann algebras which gets to the examples and active topics with a minimum of technical baggage. The philosophy is to lavish attention on a few key results and examples, and we prefer to make simplifying assumptions rather than go for the most general case. Thus we do not hesitate to give several proofs of a single result, or repeat an argument with different hypotheses.

Home page url

Download or read it online for free here:
Download link
(890KB, PDF)

Similar books

Book cover: Topics in Real and Functional AnalysisTopics in Real and Functional Analysis
by - Universitaet Wien
This manuscript provides a brief introduction to Real and (linear and nonlinear) Functional Analysis. It covers basic Hilbert and Banach space theory as well as basic measure theory including Lebesgue spaces and the Fourier transform.
(15602 views)
Book cover: Fredholm Operators and Spectral FlowFredholm Operators and Spectral Flow
by - arXiv
Fredholm operators are one of the most important classes of linear operators in mathematics. The aim of these notes is an essentially self-contained introduction to the spectral flow for paths of (generally unbounded) selfadjoint Fredholm operators.
(7446 views)
Book cover: Lectures On Some Fixed Point Theorems Of Functional AnalysisLectures On Some Fixed Point Theorems Of Functional Analysis
by - Tata Institute Of Fundamental Research
The book is concerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite dimensional spaces. Author was interested in the construction of eigenvectors and eigenvalues.
(10998 views)
Book cover: Functional AnalysisFunctional Analysis
by - Lancaster University
These lecture notes are an expanded version of a set written for a course given to final-year undergraduates at the University of Oxford. A thorough understanding of Banach and Hilbert spaces is a prerequisite for this material.
(13007 views)