Logo

An Introduction to Nonassociative Algebras

Large book cover: An Introduction to Nonassociative Algebras

An Introduction to Nonassociative Algebras
by

Publisher: Project Gutenberg
ISBN/ASIN: 0486688135
Number of pages: 81

Description:
Concise study presents in a short space some of the important ideas and results in the theory of nonassociative algebras, with particular emphasis on alternative and (commutative) Jordan algebras. Written as an introduction for graduate students and other mathematicians meeting the subject for the first time.

Home page url

Download or read it online for free here:
Download link
(PDF, TeX)

Similar books

Book cover: Smarandache Semirings, Semifields and Semivector SpacesSmarandache Semirings, Semifields and Semivector Spaces
by - American Research Press
This is the first book on the Smarandache algebraic structures that have two binary operations. Semirings are algebraic structures with two binary operations enjoying several properties and it is the most generalized structure.
(12936 views)
Book cover: Noncommutative RingsNoncommutative Rings
by
From the table of contents: Morita equivalence (Hom, Bimodules, Projective modules ...); Localization and Goldie's theorem; Central simple algebras and the Brauer group; Maximal orders; Irreducible representations; Growth of algebras.
(11502 views)
Book cover: Commutator Theory for  Congruence Modular VarietiesCommutator Theory for Congruence Modular Varieties
by - Cambridge University Press
This book presents the basic theory of commutators in congruence modular varieties and some of its strongest applications. The authors take an algebraic approach, using some of the shortcuts that Taylor and others have discovered.
(12915 views)
Book cover: Lectures On Unique Factorization DomainsLectures On Unique Factorization Domains
by - Tata Institute Of Fundamental Research
In this book we shall study some elementary properties of Krull rings and factorial rings, regular rings (local and factorial), and descent methods (Galoisian descent, the Purely inseparable case, formulae concerning derivations).
(10472 views)