An Introduction to Nonassociative Algebras
by Richard D. Schafer
Publisher: Project Gutenberg 2008
ISBN/ASIN: 0486688135
Number of pages: 81
Description:
Concise study presents in a short space some of the important ideas and results in the theory of nonassociative algebras, with particular emphasis on alternative and (commutative) Jordan algebras. Written as an introduction for graduate students and other mathematicians meeting the subject for the first time.
Download or read it online for free here:
Download link
(PDF, TeX)
Similar books

by Michael Artin
From the table of contents: Morita equivalence (Hom, Bimodules, Projective modules ...); Localization and Goldie's theorem; Central simple algebras and the Brauer group; Maximal orders; Irreducible representations; Growth of algebras.
(12418 views)

by Douglas Lundholm, Lars Svensson - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
(16176 views)

by E.B. Elliott - The Clarendon Press
The primary object of this book is that of explaining with all the clearness at my command the leading principles of invariant algebra, in the hope of making it evident to the junior student that the subject is attractive as well as important.
(11855 views)

by Robert B. Ash
Text for a graduate course in abstract algebra, it covers fundamental algebraic structures (groups, rings, fields, modules), and maps between them. The text is written in conventional style, the book can be used as a classroom text or as a reference.
(20350 views)