**Lie Theory and Special Functions**

by Willard Miller

**Publisher**: Academic Press 1968**ISBN/ASIN**: 0124974503**ISBN-13**: 9780124974500**Number of pages**: 338

**Description**:

This monograph is the result of an attempt to understand the role played by special function theory in the formalism of mathematical physics. It demonstrates explicitly that special functions which arise in the study of mathematical models of physical phenomena are in many cases dictated by symmetry groups admitted by the models.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lie Systems: Theory, Generalisations, and Applications**

by

**J.F. Carinena, J. de Lucas**-

**arXiv**

Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping.

(

**9804**views)

**Group Theory**

by

**Ferdi Aryasetiawan**-

**University of Lund**

The text deals with basic Group Theory and its applications. Contents: Abstract Group Theory; Theory of Group Representations; Group Theory in Quantum Mechanics; Lie Groups; Atomic Physics; The Group SU2: Isospin; The Point Groups; The Group SU3.

(

**15963**views)

**Partial Differential Equations of Mathematical Physics**

by

**William W. Symes**-

**Rice University**

This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.

(

**15487**views)

**Lecture Notes on Quantum Brownian Motion**

by

**Laszlo Erdos**-

**arXiv**

Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.

(

**9304**views)