
Introduction to Randomness and Statistics
by Alexander K. Hartmann
Publisher: arXiv 2009
Number of pages: 95
Description:
This text provides a practical introduction to randomness and data analysis, in particular in the context of computer simulations. At the beginning, the most basics concepts of probability are given, in particular discrete and continuous random variables. The text is basically self-contained, comes with several example C programs and contains eight practical exercises.
Download or read it online for free here:
Download link
(2.4MB, PDF)
Similar books
Statistics, Probability, and Game Theory: papers in honor of David Blackwellby David Blackwell, at al. - IMS
The bulk of the articles in this volume are research articles in probability, statistics, gambling, game theory, Markov decision processes, set theory and logic, comparison of experiments, games of timing, merging of opinions, etc.
(15736 views)
Reversible Markov Chains and Random Walks on Graphsby David Aldous, James Allen Fill - University of California, Berkeley
From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; etc.
(17338 views)
Non-Uniform Random Variate Generationby Luc Devroye - Springer
The book on small field on the crossroads of statistics, operations research and computer science. The applications of random number generators are wide and varied. The study of non-uniform random variates is precisely the subject area of the book.
(16857 views)
Markov Chains and Mixing Timesby D. A. Levin, Y. Peres, E. L. Wilmer - American Mathematical Society
An introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space.
(17287 views)