Clifford Algebra, Geometric Algebra, and Applications
by Douglas Lundholm, Lars Svensson
Publisher: arXiv 2009
Number of pages: 117
Description:
These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra.
Download or read it online for free here:
Download link
(960KB, PDF)
Similar books

by J.H. Grace, A. Young - Cambridge, University Press
Invariant theory is a subject within abstract algebra that studies polynomial functions which do not change under transformations from a linear group. This book provides an English introduction to the symbolical method in the theory of Invariants.
(13153 views)

by Michael Artin
From the table of contents: Morita equivalence (Hom, Bimodules, Projective modules ...); Localization and Goldie's theorem; Central simple algebras and the Brauer group; Maximal orders; Irreducible representations; Growth of algebras.
(12507 views)

by D. Rogalski - arXiv
These lecture notes are an expanded version of the author's lectures at a graduate workshop. The main topics discussed are Artin-Schelter regular algebras, point modules, and the noncommutative projective scheme associated to a graded algebra.
(10913 views)

by Iain Gordon - University of Edinburgh
Contents: Central extensions; Virasoro algebra; Heisenberg algebra; Enveloping algebras; Hands-on loop and affine algebras; Simple Lie algebras; Kac-Moody Lie algebras; Dynkin diagrams; Forms, Weyl groups and roots; Root spaces; Affine Lie algebras.
(13753 views)