**Clifford Algebra, Geometric Algebra, and Applications**

by Douglas Lundholm, Lars Svensson

**Publisher**: arXiv 2009**Number of pages**: 117

**Description**:

These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra.

Download or read it online for free here:

**Download link**

(960KB, PDF)

## Similar books

**Smarandache Loops**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

The purpose of this book entirely lies in the study, introduction and examination of the Smarandache loops. We expect the reader to have a good background in algebra and more specifically a strong foundation in loops and number theory.

(

**7718**views)

**The Octonions**

by

**John C. Baez**-

**University of California**

The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.

(

**16081**views)

**Universal Algebra for Computer Science**

by

**Eric G. Wagner**-

**Wagner Mathematics**

A text on universal algebra with a strong emphasis on applications and examples from computer science. The text introduces signatures, algebras, homomorphisms, initial algebras, free algebras, and illustrates them with interactive applications.

(

**12684**views)

**Smarandache Near-rings**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

Near-rings are one of the generalized structures of rings. This is a book on Smarandache near-rings where the Smarandache analogues of the near-ring concepts are developed. The reader is expected to have a background in algebra and in near-rings.

(

**10138**views)