**Neutrosophic Methods in General Relativity**

by D. Rabounski, F. Smarandache, L. Borissova

**Publisher**: Hexis 2005**ISBN/ASIN**: 1931233918**ISBN-13**: 9781931233910**Number of pages**: 80

**Description**:

Neutrosophy is a theory developed by Florentin Smarandache in 1995 as a generalization of dialectics, which studies the origin, nature and properties of neutralities. This book applies neutrosophic method to the General Theory of Relativity, aiming to discover new effects hidden before. Studying Einstein's basic space-time, neutrosophic method displays new trajectories and particles never considered before.

Download or read it online for free here:

**Download link**

(450KB, PDF)

## Similar books

**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by

**Horst R. Beyer**-

**arXiv**

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.

(

**8888**views)

**General Relativity Without Calculus**

by

**Jose Natario**-

**Springer**

This book was written as a guide for a one week course aimed at exceptional students in their final years of secondary education. The course was intended to provide a quick but nontrivial introduction to Einstein's general theory of relativity.

(

**6097**views)

**Lecture Notes on General Relativity**

by

**Sean M. Carroll**-

**University of California**

Lecture notes on introductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein's equations, and three applications: gravitational radiation, black holes, and cosmology.

(

**10982**views)

**Post-Newtonian Theory for the Common Reader**

by

**Eric Poisson**-

**University of Guelph**

From the table of contents: Preliminaries; Integration techniques; First post-Minkowskian approximation; Second post-Minkowskian approximation; Equations of motion; Gravitational waves; Energy radiated and radiation reaction.

(

**6066**views)