**Abelian Varieties**

by J. S. Milne

2008**Number of pages**: 172

**Description**:

An introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Lectures on An Introduction to Grothendieck's Theory of the Fundamental Group**

by

**J.P. Murre**-

**Tata Institute of Fundamental Research**

The purpose of this text is to give an introduction to Grothendieck's theory of the fundamental group in algebraic geometry with the study of the fundamental group of an algebraic curve over an algebraically closed field of arbitrary characteristic.

(

**10754**views)

**Introduction to Stokes Structures**

by

**Claude Sabbah**-

**arXiv**

The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.

(

**10479**views)

**Algebraic Geometry over the Complex Numbers**

by

**Donu Arapura**-

**Purdue University**

Algebraic geometry is the geometric study of sets of solutions to polynomial equations over a field (or ring). In this book the author maintains a reasonable balance between rigor and intuition; so it retains the informal quality of lecture notes.

(

**13858**views)

**Ample Subvarieties of Algebraic Varieties**

by

**Robin Hartshorne**-

**Springer**

These notes are an enlarged version of a three-month course of lectures. Their style is informal. I hope they will serve as an introduction to some current research topics, for students who have had a one year course in modern algebraic geometry.

(

**8540**views)