Notes on Differential Geometry and Lie Groups

Small book cover: Notes on Differential Geometry and Lie Groups

Notes on Differential Geometry and Lie Groups

Publisher: University of Pennsylvania

Contents: Introduction to Manifolds and Lie Groups; Review of Groups and Group Actions; Manifolds; Construction of Manifolds From Gluing Data; Lie Groups, Lie Algebra, Exponential Map; The Derivative of exp and Dynkin's Formula; Bundles, Riemannian Metrics, Homogeneous Spaces; Differential Forms; Integration on Manifolds; Distributions and the Frobenius Theorem; Connections and Curvature in Vector Bundles; Geodesics on Riemannian Manifolds; Curvature in Riemannian Manifolds; etc.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: An Introduction to the Lie Theory of One-Parameter GroupsAn Introduction to the Lie Theory of One-Parameter Groups
by - D.C. Heath & co
The object of this book is to present in an elementary manner, in English, an introduction to Lie s theory of one-parameter groups, with special reference to its application to the solution of differential equations invariant under such groups.
Book cover: Group Theory: Birdtracks, Lie's, and Exceptional GroupsGroup Theory: Birdtracks, Lie's, and Exceptional Groups
by - Princeton University Press
A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.
Book cover: Lie Groups, Physics, and GeometryLie Groups, Physics, and Geometry
by - Drexel University
The book emphasizes the most useful aspects of Lie groups, in a way that is easy for students to acquire and to assimilate. It includes a chapter dedicated to the applications of Lie group theory to solving differential equations.
Book cover: Lie Groups in PhysicsLie Groups in Physics
by - Utrecht University
Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.