**Notes on Differential Geometry and Lie Groups**

by Jean Gallier

**Publisher**: University of Pennsylvania 2010

**Description**:

Contents: Introduction to Manifolds and Lie Groups; Review of Groups and Group Actions; Manifolds; Construction of Manifolds From Gluing Data; Lie Groups, Lie Algebra, Exponential Map; The Derivative of exp and Dynkin's Formula; Bundles, Riemannian Metrics, Homogeneous Spaces; Differential Forms; Integration on Manifolds; Distributions and the Frobenius Theorem; Connections and Curvature in Vector Bundles; Geodesics on Riemannian Manifolds; Curvature in Riemannian Manifolds; etc.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lie groups and Lie algebras**

by

**N. Reshetikhin, V. Serganova, R. Borcherds**-

**UC Berkeley**

From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.

(

**12369**views)

**An Elementary Introduction to Groups and Representations**

by

**Brian C. Hall**-

**arXiv**

An elementary introduction to Lie groups, Lie algebras, and their representations. Topics include definitions and examples of Lie groups and Lie algebras, the basics of representations theory, the Baker-Campbell-Hausdorff formula, and more.

(

**19404**views)

**Lecture Notes in Lie Groups**

by

**Vladimir G. Ivancevic, Tijana T. Ivancevic**-

**arXiv**

These notes are designed for a 1-semester third year or graduate course in mathematics, physics, or biology. We give both physical and medical examples of Lie groups. The only necessary background are advanced calculus and linear algebra.

(

**10528**views)

**Lie Groups in Physics**

by

**G. 't Hooft, M. J. G. Veltman**-

**Utrecht University**

Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.

(

**15456**views)