**Notes on Classical Groups**

by Peter J. Cameron

**Publisher**: Queen Mary and Westfield College 2000**Number of pages**: 96

**Description**:

These notes are the content of an M.Sc. course the author gave at Queen Mary and Westfield College, London. Contents: Fields and vector spaces; Linear and projective groups; Polarities and forms; Symplectic groups; Unitary groups; Orthogonal groups; Klein correspondence and triality; A short bibliography on classical groups.

Download or read it online for free here:

**Download link**

(340KB, PDF)

## Similar books

**Lie groups and Lie algebras**

by

**N. Reshetikhin, V. Serganova, R. Borcherds**-

**UC Berkeley**

From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.

(

**11682**views)

**Algebraic Groups, Lie Groups, and their Arithmetic Subgroups**

by

**J. S. Milne**

This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.

(

**12101**views)

**Roots of a Compact Lie Group**

by

**Kristopher Tapp**-

**arXiv**

This expository article introduces the topic of roots in a compact Lie group. Compared to the many other treatments of this standard topic, I intended for mine to be relatively elementary, example-driven, and free of unnecessary abstractions.

(

**7182**views)

**Introduction to Lie Groups and Lie Algebras**

by

**Alexander Kirillov, Jr.**-

**SUNY at Stony Brook**

The book covers the basic contemporary theory of Lie groups and Lie algebras. This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. Written in an informal style.

(

**13929**views)