Lectures on Etale Cohomology
by J. S. Milne
2008
Number of pages: 196
Description:
These are the notes for a course taught at the University of Michigan in 1989 and 1998. The emphasis is on heuristic arguments rather than formal proofs and on varieties rather than schemes. The notes also discuss the proof of the Weil conjectures (Grothendieck and Deligne).
Download or read it online for free here:
Download link
(1.2MB, PDF)
Similar books
A Concise Course in Algebraic Topology
by J. P. May - University Of Chicago Press
This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics. Most chapters end with problems that further explore and refine the concepts presented.
(19398 views)
by J. P. May - University Of Chicago Press
This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics. Most chapters end with problems that further explore and refine the concepts presented.
(19398 views)
Homotopy Theories and Model Categories
by W. G. Dwyer, J. Spalinski - University of Notre Dame
This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.
(9610 views)
by W. G. Dwyer, J. Spalinski - University of Notre Dame
This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.
(9610 views)
Lectures on Introduction to Algebraic Topology
by G. de Rham - Tata Institute of Fundamental Research
These notes were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; and more.
(10082 views)
by G. de Rham - Tata Institute of Fundamental Research
These notes were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; and more.
(10082 views)
Manifold Theory
by Peter Petersen - UCLA
These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.
(9827 views)
by Peter Petersen - UCLA
These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.
(9827 views)