**Lectures on Etale Cohomology**

by J. S. Milne

2008**Number of pages**: 196

**Description**:

These are the notes for a course taught at the University of Michigan in 1989 and 1998. The emphasis is on heuristic arguments rather than formal proofs and on varieties rather than schemes. The notes also discuss the proof of the Weil conjectures (Grothendieck and Deligne).

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**A Concise Course in Algebraic Topology**

by

**J. P. May**-

**University Of Chicago Press**

This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics. Most chapters end with problems that further explore and refine the concepts presented.

(

**19398**views)

**Homotopy Theories and Model Categories**

by

**W. G. Dwyer, J. Spalinski**-

**University of Notre Dame**

This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.

(

**9610**views)

**Lectures on Introduction to Algebraic Topology**

by

**G. de Rham**-

**Tata Institute of Fundamental Research**

These notes were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; and more.

(

**10082**views)

**Manifold Theory**

by

**Peter Petersen**-

**UCLA**

These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.

(

**9827**views)