Homotopy Theories and Model Categories
by W. G. Dwyer, J. Spalinski
Publisher: University of Notre Dame 1995
Number of pages: 56
Description:
This paper is an introduction to the theory of model categories, which was developed by Quillen. We have tried to minimize the prerequisites needed for understanding this paper; it should be enough to have some familiarity with CW-complexes, with chain complexes, and with the basic terminology associated with categories.
Download or read it online for free here:
Download link
(420KB, PDF)
Similar books

by Peter Saveliev - Intelligent Perception
Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.
(8109 views)

by Boris Botvinnik - University of Oregon
Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.
(9778 views)

by Robin Hartshorne - Springer
The main purpose of these notes is to prove a duality theorem for cohomology of quasi-coherent sheaves, with respect to a proper morphism of locally noetherian preschemes. Various such theorems are already known. Typical is the duality theorem ...
(4943 views)

by G. Jr. Lewis, J. P. May, M. Steinberger, J. E. McClure - Springer
Our purpose is to establish the foundations of equivariant stable homotopy theory. We shall construct a stable homotopy category of G-spectra,and use it to study equivariant duality, equivariant transfer, the Burnside ring, and related topics.
(13725 views)