**Introduction to Linear Bialgebra**

by W.B.V. Kandasamy, F. Smarandache, K. Ilanthenral

**Publisher**: arXiv 2005**ISBN/ASIN**: 1931233977**ISBN-13**: 9781931233972**Number of pages**: 238

**Description**:

This book has for the first time, introduced a new algebraic structure called linear bialgebra, which is also a very powerful algebraic tool that can yield itself to applications. With the recent introduction of bimatrices (2005)we have ventured in this book to introduce new concepts like linear bialgebra and Smarandache neutrosophic linear bialgebra and also give the applications of these algebraic structures.

Download or read it online for free here:

**Download link**

(840KB, PDF)

## Similar books

**Notes on Numerical Linear Algebra**

by

**George Benthien**

Tutorial describing many of the standard numerical methods used in Linear Algebra. Topics include Gaussian Elimination, LU and QR Factorizations, The Singular Value Decomposition, Eigenvalues and Eigenvectors via the QR Method, etc.

(

**11407**views)

**The Theory of Determinants and Their Applications**

by

**Robert Forsyth Scott**-

**Cambridge University Press**

In the present treatise I have attempted to give an exposition of the Theory of Determinants and their more important applications. The treatise uses Grassmann's alternate units, by means of which the study of determinants is much simplified.

(

**2439**views)

**n-Linear Algebra of Type II**

by

**W. B. V. Kandasamy, F. Smarandache**-

**InfoLearnQuest**

This book is a continuation of the book n-linear algebra of type I. Most of the properties that could not be derived or defined for n-linear algebra of type I is made possible in this new structure which is introduced in this book.

(

**9498**views)

**Lectures on Linear Algebra and Matrices**

by

**G. Donald Allen**-

**Texas A&M University**

Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.

(

**11933**views)