Logo

Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem

Large book cover: Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem

Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem
by

Publisher: Publish or Perish Inc.
ISBN/ASIN: 0849378745
Number of pages: 536

Description:
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary.

Home page url

Download or read it online for free here:
Download link
(DVI, PS)

Similar books

Book cover: Lectures on Nonlinear Integrable Equations and their SolutionsLectures on Nonlinear Integrable Equations and their Solutions
by - arXiv.org
This is an introductory course on nonlinear integrable partial differential and differential-difference equations based on lectures given for students of Moscow Institute of Physics and Technology and Higher School of Economics.
(5193 views)
Book cover: Random MatricesRandom Matrices
by - arXiv.org
This is an introductory course about random matrices. These notes will give the reader a smell of that fascinating tool for physicists and mathematicians that are Random Matrices, and they can give the envy to learn and search more.
(10948 views)
Book cover: Topics in Spectral TheoryTopics in Spectral Theory
by - McGill University
The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.
(9044 views)
Book cover: Lecture Notes on Quantum Brownian MotionLecture Notes on Quantum Brownian Motion
by - arXiv
Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.
(9449 views)