**Infinite-dimensional Lie Algebras**

by Iain Gordon

**Publisher**: University of Edinburgh 2009**Number of pages**: 55

**Description**:

Contents: Central extensions; The Virasoro algebra; The Heisenberg algebra; Enveloping algebras; A little infinite-dimensional surprise; Hands-on loop and affine algebras; Simple Lie algebras; Kac-Moody Lie algebras; Classification of generalised Cartanmatrices; Dynkin diagrams; Forms, Weyl groups and roots; Root spaces; Affine Lie algebras and Kac-Moody Lie algebras; etc.

Download or read it online for free here:

**Download link**

(780KB, PDF)

## Similar books

**Clifford Algebra, Geometric Algebra, and Applications**

by

**Douglas Lundholm, Lars Svensson**-

**arXiv**

These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.

(

**15197**views)

**The Octonions**

by

**John C. Baez**-

**University of California**

The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.

(

**19784**views)

**Smarandache Near-rings**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

Near-rings are one of the generalized structures of rings. This is a book on Smarandache near-rings where the Smarandache analogues of the near-ring concepts are developed. The reader is expected to have a background in algebra and in near-rings.

(

**13706**views)

**The Construction and Study of Certain Important Algebras**

by

**Claude Chevalley**-

**The Mathematical Society Of Japan**

This is the reproduction of the beautiful lectures delivered by Professor C. Chevalley at the University of Tokyo in April-June 1954. Contents: Graded algebras; Tensor algebras; Clifford algebras; Some applications of exterior algebras.

(

**10523**views)