Logo

Hopf Algebras in General and in Combinatorial Physics: a practical introduction

Small book cover: Hopf Algebras in General and in Combinatorial Physics: a practical introduction

Hopf Algebras in General and in Combinatorial Physics: a practical introduction
by

Publisher: arXiv
Number of pages: 40

Description:
This tutorial is intended to give an accessible introduction to Hopf algebras. The mathematical context is that of representation theory, and we also illustrate the structures with examples taken from combinatorics and quantum physics, showing that in this latter case the axioms of Hopf algebra arise naturally. The text contains many exercises, some taken from physics, aimed at expanding and exemplifying the concepts introduced.

Home page url

Download or read it online for free here:
Download link
(480KB, PDF)

Similar books

Book cover: The OctonionsThe Octonions
by - University of California
The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.
(16645 views)
Book cover: Noncommutative RingsNoncommutative Rings
by
From the table of contents: Morita equivalence (Hom, Bimodules, Projective modules ...); Localization and Goldie's theorem; Central simple algebras and the Brauer group; Maximal orders; Irreducible representations; Growth of algebras.
(8571 views)
Book cover: The Algebra of InvariantsThe Algebra of Invariants
by - Cambridge, University Press
Invariant theory is a subject within abstract algebra that studies polynomial functions which do not change under transformations from a linear group. This book provides an English introduction to the symbolical method in the theory of Invariants.
(8458 views)
Book cover: Set Theoretic Approach to Algebraic Structures in MathematicsSet Theoretic Approach to Algebraic Structures in Mathematics
by - Educational Publisher
This book brings out how sets in algebraic structures can be used to construct the most generalized algebraic structures, like set linear algebra / vector space, set ideals in groups and rings and semigroups, and topological set vector spaces.
(8431 views)