**Notes on Fermionic Fock Space for Number Theorists**

by Greg W. Anderson

**Publisher**: The University of Arizona 2000**Number of pages**: 99

**Description**:

This is a compilation of exercises, worked examples and key references (along with provocative remarks) that the author compiled in order to help readers learn their way around fermionic Fock space. The notebook is suitable for use by second year graduate students with an interest in number theory.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Langlands Correspondence for Loop Groups**

by

**Edward Frenkel**-

**Cambridge University Press**

This book provides a review of an important aspect of the geometric Langlands program - the role of representation theory of affine Kac-Moody algebras. It provides introductions to such notions as vertex algebras, the Langlands dual group, etc.

(

**6426**views)

**Geometry of Numbers with Applications to Number Theory**

by

**Pete L. Clark**-

**University of Georgia**

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.

(

**6471**views)

**On Some of Smarandache's Problems**

by

**Krassimir Atanassov**-

**Erhus Univ Pr**

A collection of 27 Smarandache's problems which the autor solved by 1999. 22 problems are related to different sequences, 4 problems are proved, modifications of two problems are formulated, and counterexamples to two of the problems are constructed.

(

**8641**views)

**An Introduction to the Smarandache Function**

by

**Charles Ashbacher**-

**Erhus Univ Pr**

In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.

(

**9217**views)