**Special Course in Functional Analysis: (Non-)Commutative Topology**

by Ville Turunen

**Publisher**: Aalto TKK 2008**Number of pages**: 83

**Description**:

In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics. The prerequisite for this course is some elementary understanding of Banach spaces.

Download or read it online for free here:

**Download link**

(370KB, PDF)

## Similar books

**The Convenient Setting of Global Analysis**

by

**Andreas Kriegl, Peter W. Michor**-

**American Mathematical Society**

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.

(

**13336**views)

**Manifolds**

by

**Neil Lambert**-

**King's College London**

From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.

(

**9782**views)

**Lecture Notes on Seiberg-Witten Invariants**

by

**John Douglas Moore**-

**Springer**

A streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure.

(

**10110**views)

**Topology**

by

**Curtis T. McMullen**-

**Harvard University**

Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology; etc.

(

**7692**views)