Logo

Lecture Notes on Seiberg-Witten Invariants

Large book cover: Lecture Notes on Seiberg-Witten Invariants

Lecture Notes on Seiberg-Witten Invariants
by

Publisher: Springer
ISBN/ASIN: 3540412212
ISBN-13: 9783540412212
Number of pages: 130

Description:
This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems.

Download or read it online for free here:
Download link
(550KB, PDF)

Similar books

Book cover: TopologyTopology
by - Harvard University
Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology; etc.
(7342 views)
Book cover: Lectures on Sheaf TheoryLectures on Sheaf Theory
by - Tata Institute of Fundamental Research
A sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. Contents: Sheaves; Sections; Cohomology groups of a space with coefficients in a presheaf; Introduction of the family Phi; etc.
(9249 views)
Book cover: Manifolds and Differential FormsManifolds and Differential Forms
by - Cornell University
The text covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.
(12338 views)
Book cover: Optimization Algorithms on Matrix ManifoldsOptimization Algorithms on Matrix Manifolds
by - Princeton University Press
Many science and engineering problems can be rephrased as optimization problems on matrix search spaces endowed with a manifold structure. This book shows how to exploit the structure of such problems to develop efficient numerical algorithms.
(17287 views)