**Lecture Notes on Seiberg-Witten Invariants**

by John Douglas Moore

**Publisher**: Springer 2010**ISBN/ASIN**: 3540412212**ISBN-13**: 9783540412212**Number of pages**: 130

**Description**:

This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems.

Download or read it online for free here:

**Download link**

(550KB, PDF)

## Similar books

**Special Course in Functional Analysis: (Non-)Commutative Topology**

by

**Ville Turunen**-

**Aalto TKK**

In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.

(

**8799**views)

**Topology and Physics: A Historical Essay**

by

**C. Nash**-

**arXiv**

In this essay we wish to embark on the telling of a story which, almost certainly, stands only at its beginning. We shall discuss the links and the interaction between one very old subject, physics, and a much newer one, topology.

(

**11011**views)

**Manifolds and Differential Forms**

by

**Reyer Sjamaar**-

**Cornell University**

The text covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.

(

**9898**views)

**Noncommutative Localization in Algebra and Topology**

by

**Andrew Ranicki**-

**Cambridge University Press**

Noncommutative localization is a technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative localizations of the fundamental group rings.

(

**6742**views)