Lecture Notes on Seiberg-Witten Invariants
by John Douglas Moore
Publisher: Springer 2010
ISBN/ASIN: 3540412212
ISBN-13: 9783540412212
Number of pages: 130
Description:
This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems.
Download or read it online for free here:
Download link
(550KB, PDF)
Similar books
Manifoldsby Neil Lambert - King's College London
From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.
(11356 views)
Manifolds and Differential Formsby Reyer Sjamaar - Cornell University
The text covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.
(14571 views)
Optimization Algorithms on Matrix Manifoldsby P.-A. Absil, R. Mahony, R. Sepulchre - Princeton University Press
Many science and engineering problems can be rephrased as optimization problems on matrix search spaces endowed with a manifold structure. This book shows how to exploit the structure of such problems to develop efficient numerical algorithms.
(20321 views)
Special Course in Functional Analysis: (Non-)Commutative Topologyby Ville Turunen - Aalto TKK
In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.
(12779 views)