Lecture Notes on Seiberg-Witten Invariants
by John Douglas Moore
Publisher: Springer 2010
ISBN/ASIN: 3540412212
ISBN-13: 9783540412212
Number of pages: 130
Description:
This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems.
Download or read it online for free here:
Download link
(550KB, PDF)
Similar books
by Andrew Ranicki - Princeton University Press
One of the principal aims of surgery theory is to classify the homotopy types of manifolds using tools from algebra and topology. The algebraic approach is emphasized in this book, and it gives the reader a good overview of the subject.
(10172 views)
by C.H. Dowker - Tata Institute of Fundamental Research
A sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. Contents: Sheaves; Sections; Cohomology groups of a space with coefficients in a presheaf; Introduction of the family Phi; etc.
(10371 views)
by Reyer Sjamaar - Cornell University
The text covers manifolds and differential forms for an audience of undergraduates who have taken a typical calculus sequence, including basic linear algebra and multivariable calculus up to the integral theorems of Green, Gauss and Stokes.
(13371 views)
by C. Nash - arXiv
In this essay we wish to embark on the telling of a story which, almost certainly, stands only at its beginning. We shall discuss the links and the interaction between one very old subject, physics, and a much newer one, topology.
(14522 views)