**An Introduction to Algebraic Number Theory**

by F. Oggier

**Publisher**: Nanyang Technological University 2010**Number of pages**: 95

**Description**:

From the table of contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations;p-adic fields.

Download or read it online for free here:

**Download link**

(560KB, PDF)

## Similar books

**Heegner Points and Rankin L-Series**

by

**Henri Darmon, Shou-Wu Zhang**-

**Cambridge University Press**

This volume has the Gross-Zagier formula and its avatars as a common unifying theme. It covers the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics.

(

**8398**views)

**Introduction to Algebraic Number Theory**

by

**William Stein**-

**University of Washington**

Topics in this book: Rings of integers of number fields; Unique factorization of ideals in Dedekind domains; Structure of the group of units of the ring of integers; Finiteness of the group of equivalence classes of ideals of the ring of integers...

(

**11375**views)

**Algebraic Number Theory**

by

**J.S. Milne**

Contents: Preliminaries From Commutative Algebra; Rings of Integers; Dedekind Domains; Factorization; The Finiteness of the Class Number; The Unit Theorem; Cyclotomic Extensions; Fermat's Last Theorem; Valuations; Local Fields; Global Fields.

(

**14800**views)

**A Course In Algebraic Number Theory**

by

**Robert B. Ash**-

**University of Illinois**

Basic course in algebraic number theory. It covers the general theory of factorization of ideals in Dedekind domains, the use of Kummerâ€™s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc.

(

**14780**views)