
Lectures on Siegel Modular Forms and Representation by Quadratic Forms
by Y. Kitaoka
Publisher: Tata Institute of Fundamental Research 1986
ISBN/ASIN: 0387164723
ISBN-13: 9780387164724
Number of pages: 197
Description:
This book is concerned with the problem of representation of positive definite quadratic forms by other such forms. From the table of contents: Preface; Fourier Coefficients of Siegel Modular Forms; Arithmetic of Quadratic Forms.
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books
Lectures on Topics in Algebraic Number Theoryby Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These lecture notes give a rapid introduction to some basic aspects of Algebraic Number Theory with as few prerequisites as possible. Topics: Field Extensions; Ring Extensions; Dedekind Domains and Ramification Theory; Class Number and Lattices.
(11771 views)
Lectures on Field Theory and Ramification Theoryby Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(11591 views)
An Introduction to Algebraic Number Theoryby F. Oggier - Nanyang Technological University
Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.
(11820 views)
Algebraic Number Theoryby J.S. Milne
Contents: Preliminaries From Commutative Algebra; Rings of Integers; Dedekind Domains; Factorization; The Finiteness of the Class Number; The Unit Theorem; Cyclotomic Extensions; Fermat's Last Theorem; Valuations; Local Fields; Global Fields.
(18604 views)