Logo

A Basic Introduction to Large Deviations: Theory, Applications, Simulations

Small book cover: A Basic Introduction to Large Deviations: Theory, Applications, Simulations

A Basic Introduction to Large Deviations: Theory, Applications, Simulations
by

Publisher: arXiv
Number of pages: 56

Description:
The theory of large deviations deals with the probabilities of rare events (or fluctuations) that are exponentially small as a function of some parameter, e.g., the number of random components of a system, the time over which a stochastic system is observed, the amplitude of the noise perturbing a dynamical system or the temperature of a chemical reaction.

Home page url

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Statistical Physics IStatistical Physics I
by - University of Guelph
From the table of contents: Thermodynamic systems and the zeroth law; Transformations and the first law; Heat engines and the second law; Entropy and the third law; Thermodynamic potentials; Thermodynamics of magnetic systems.
(10833 views)
Book cover: Elements of Phase Transitions and Critical PhenomenaElements of Phase Transitions and Critical Phenomena
by - Oxford University Press
This book provides an introductory account on the theory of phase transitions and critical phenomena, a subject now recognized to be indispensable for students and researchers from many fields of physics and related disciplines.
(629 views)
Book cover: Lecture Notes in Statistical Mechanics and MesoscopicsLecture Notes in Statistical Mechanics and Mesoscopics
by - arXiv
These are notes for quantum and statistical mechanics courses. Topics covered: master equations; non-equilibrium processes; fluctuation theorems; linear response theory; adiabatic transport; the Kubo formalism; scattering approach to mesoscopics.
(8145 views)
Book cover: Statistical PhysicsStatistical Physics
by - University of Vienna
This web tutorial was devised as a tool for teaching Statistical Physics to second year students. Topics covered: Why is water wet? Elements of Kinetic Theory; Phase space; Statistical Thermodynamics; Statistical Quantum Mechanics.
(10023 views)