Logo

Lectures on Commutative Algebra

Small book cover: Lectures on Commutative Algebra

Lectures on Commutative Algebra
by

Publisher: Indian Institute of Technology, Bombay
Number of pages: 64

Description:
These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.

Home page url

Download or read it online for free here:
Download link
(480KB, PDF)

Similar books

Book cover: The Algebraic Theory of Modular SystemsThe Algebraic Theory of Modular Systems
by - Cambridge University Press
Many of the ideas introduced by F.S. Macaulay in this classic book have developed into central concepts in what has become the branch of mathematics known as Commutative Algebra. Today his name is remembered through the term 'Cohen-Macaulay ring'.
(9245 views)
Book cover: Progress in Commutative Algebra 2: Closures, Finiteness and FactorizationProgress in Commutative Algebra 2: Closures, Finiteness and Factorization
by - De Gruyter Open
This volume contains surveys on closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a guide to closure operations...
(3816 views)
Book cover: Commutative Algebra and Noncommutative Algebraic GeometryCommutative Algebra and Noncommutative Algebraic Geometry
by - Cambridge University Press
The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.
(5622 views)
Book cover: Trends in Commutative AlgebraTrends in Commutative Algebra
by - Cambridge University Press
This book focuses on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.
(10491 views)