**Determinantal Rings**

by Winfried Bruns, Udo Vetter

**Publisher**: Springer 1988**ISBN/ASIN**: 3540194681**ISBN-13**: 9783540194682**Number of pages**: 244

**Description**:

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**An Introduction to Semialgebraic Geometry**

by

**Michel Coste**-

**Universite de Rennes**

Semialgebraic geometry is the study of sets of real solutions of systems of polynomial equations and inequalities. These notes present the first results of semialgebraic geometry and related algorithmic issues. Their content is by no means original.

(

**12595**views)

**Lectures on Algebraic Groups**

by

**Alexander Kleshchev**-

**University of Oregon**

Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.

(

**12495**views)

**Computations in Algebraic Geometry with Macaulay 2**

by

**D. Eisenbud, D. Grayson, M. Stillman, B. Sturmfels**-

**Springer**

This book presents algorithmic tools for algebraic geometry and experimental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out.

(

**11284**views)

**Lectures on Curves on Rational and Unirational Surfaces**

by

**Masayoshi Miyanishi**-

**Tata Institute of Fundamental Research**

From the table of contents: Introduction; Geometry of the affine line (Locally nilpotent derivations, Algebraic pencils of affine lines, Flat fibrations by the affine line); Curves on an affine rational surface; Unirational surfaces; etc.

(

**8859**views)