Logo

Determinantal Rings by Winfried Bruns, Udo Vetter

Large book cover: Determinantal Rings

Determinantal Rings
by

Publisher: Springer
ISBN/ASIN: 3540194681
ISBN-13: 9783540194682
Number of pages: 244

Description:
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law.

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: An Introduction to Complex Algebraic GeometryAn Introduction to Complex Algebraic Geometry
by - Institut Fourier Grenoble
This is an advanced course in complex algebraic geometry presupposing only some familiarity with theory of algebraic curves or Riemann surfaces. The goal is to understand the Enriques classification of surfaces from the point of view of Mori-theory.
(10657 views)
Book cover: Lectures on Moduli of CurvesLectures on Moduli of Curves
by - Tata Institute of Fundamental Research
These lecture notes are based on some lectures given in 1980. The object of the lectures was to construct a projective moduli space for stable curves of genus greater than or equal two using Mumford's geometric invariant theory.
(9266 views)
Book cover: Introduction to Stokes StructuresIntroduction to Stokes Structures
by - arXiv
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.
(10099 views)
Book cover: Mixed MotivesMixed Motives
by - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(15134 views)