**Commutative Algebra**

by Pete L. Clark

**Publisher**: University of Georgia 2015**Number of pages**: 363

**Description**:

Contents: Introduction to Commutative Rings; Introduction to Modules; Ideals; Examples of Rings; Swan's Theorem; Localization; Noetherian Rings; Boolean rings; Affine algebras and the Nullstellensatz; The spectrum; Integral extensions; Factorization; Dedekind domains; Picard groups.

Download or read it online for free here:

**Download link**

(1.9MB, PDF)

## Similar books

**Determinantal Rings**

by

**Winfried Bruns, Udo Vetter**-

**Springer**

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.

(

**10279**views)

**Commutative Algebra and Noncommutative Algebraic Geometry**

by

**David Eisenbud, et al.**-

**Cambridge University Press**

The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.

(

**5189**views)

**Commutative Algebra**

by

**Jacob Lurie, Akhil Mathew**-

**Harvard University**

Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.

(

**10040**views)

**Introduction to Commutative Algebra**

by

**Thomas J. Haines**-

**University of Maryland**

Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lectures is to study commutative algebra and some topics in algebraic geometry in a parallel manner.

(

**9327**views)