Logo

Commutative Algebra by Pete L. Clark

Commutative Algebra
by

Publisher: University of Georgia
Number of pages: 363

Description:
Contents: Introduction to Commutative Rings; Introduction to Modules; Ideals; Examples of Rings; Swan's Theorem; Localization; Noetherian Rings; Boolean rings; Affine algebras and the Nullstellensatz; The spectrum; Integral extensions; Factorization; Dedekind domains; Picard groups.

Home page url

Download or read it online for free here:
Download link
(1.9MB, PDF)

Similar books

Book cover: The CRing Project: a collaborative open source textbook on commutative algebraThe CRing Project: a collaborative open source textbook on commutative algebra
by - CRing Project
The CRing project is an open source textbook on commutative algebra, aiming to comprehensively cover the foundations needed for algebraic geometry at the EGA or SGA level. Suitable for a beginning undergraduate with a background in abstract algebra.
(10453 views)
Book cover: Trends in Commutative AlgebraTrends in Commutative Algebra
by - Cambridge University Press
This book focuses on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.
(11531 views)
Book cover: Commutative Algebra and Noncommutative Algebraic GeometryCommutative Algebra and Noncommutative Algebraic Geometry
by - Cambridge University Press
The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.
(6701 views)
Book cover: Introduction to Commutative AlgebraIntroduction to Commutative Algebra
by - University of Maryland
Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lectures is to study commutative algebra and some topics in algebraic geometry in a parallel manner.
(10801 views)