Logo

The Geometry and Topology of Three-Manifolds

Small book cover: The Geometry and Topology of Three-Manifolds

The Geometry and Topology of Three-Manifolds
by

Publisher: Mathematical Sciences Research Institute
ISBN/ASIN: B00072N0KI
Number of pages: 502

Description:
The author's intent is to describe the very strong connection between geometry and lowdimensional topology in a way which will be useful and accessible (with some effort) to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Lower K- and L-theoryLower K- and L-theory
by - Cambridge University Press
This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.
(9812 views)
Book cover: Unsolved Problems in Virtual Knot Theory and Combinatorial Knot TheoryUnsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory
by - arXiv
The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The paper introduces the theory and discusses some problems in that context.
(6452 views)
Book cover: Ends of ComplexesEnds of Complexes
by - Cambridge University Press
The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of mapping tori and telescopes.
(9352 views)
Book cover: Algebraic and Geometric SurgeryAlgebraic and Geometric Surgery
by - Oxford University Press
Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.
(10207 views)