**Knot Diagrammatics**

by Louis H. Kauffman

**Publisher**: arXiv 2004**Number of pages**: 107

**Description**:

This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.

Download or read it online for free here:

**Download link**

(650KB, PDF)

## Similar books

**Foliations and the Geometry of 3-manifolds**

by

**Danny Calegari**-

**Oxford University Press**

The book gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.

(

**12097**views)

**Diffeomorphisms of Elliptic 3-Manifolds**

by

**S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein**-

**arXiv**

The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.

(

**8512**views)

**Exotic Homology Manifolds**

by

**Frank Quinn, Andrew Ranicki**

Homology manifolds were developed in the 20th century to give a precise setting for Poincare's ideas on duality. They are investigated using algebraic and geometric methods. This volume is the proceedings of a workshop held in 2003.

(

**9064**views)

**Algebraic L-theory and Topological Manifolds**

by

**A. A. Ranicki**-

**Cambridge University Press**

Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds.

(

**9549**views)