Diffeomorphisms of Elliptic 3-Manifolds
by S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein
Publisher: arXiv 2011
Number of pages: 185
Description:
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, that is, those that have finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
Download or read it online for free here:
Download link
(1.6MB, PDF)
Similar books

by Louis H. Kauffman - University of Illinois at Chicago
This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.
(11348 views)

by A. A. Ranicki - Cambridge University Press
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds.
(10327 views)

by Dennis Sullivan - Springer
In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.
(10574 views)

by Eiji Ogasa - arXiv
This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.
(7138 views)