**Diffeomorphisms of Elliptic 3-Manifolds**

by S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein

**Publisher**: arXiv 2011**Number of pages**: 185

**Description**:

The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, that is, those that have finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Lower K- and L-theory**

by

**Andrew Ranicki**-

**Cambridge University Press**

This is the first treatment of the applications of the lower K- and L-groups to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. Only elementary constructions are used.

(

**9627**views)

**A Geometric Approach to Differential Forms**

by

**David Bachman**-

**arXiv**

This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.

(

**15575**views)

**Knot Invariants and Higher Representation Theory**

by

**Ben Webster**-

**arXiv**

We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...

(

**7124**views)

**Exotic Homology Manifolds**

by

**Frank Quinn, Andrew Ranicki**

Homology manifolds were developed in the 20th century to give a precise setting for Poincare's ideas on duality. They are investigated using algebraic and geometric methods. This volume is the proceedings of a workshop held in 2003.

(

**8979**views)