**The Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds**

by A.A. Ranicki, et al,

**Publisher**: Springer 1996**ISBN/ASIN**: 9048147352**ISBN-13**: 9789048147359**Number of pages**: 194

**Description**:

The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that further development of high-dimensional topology would lead to a verification in all dimensions.

Download or read it online for free here:

**Download link**

(740KB, PDF)

## Similar books

**Surgical Methods in Rigidity**

by

**F.T. Farrell**-

**Springer**

This book is an introduction to the topological rigidity theorem for compact non-positively curved Riemannian manifolds. It contains a quick informal account of the background material from surgery theory and controlled topology prerequesite.

(

**7754**views)

**Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory**

by

**R. Fenn, D.P. Ilyutko, L.H. Kauffman, V.O. Manturov**-

**arXiv**

The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The paper introduces the theory and discusses some problems in that context.

(

**6453**views)

**Ends of Complexes**

by

**Bruce Hughes, Andrew Ranicki**-

**Cambridge University Press**

The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of mapping tori and telescopes.

(

**9358**views)

**Knot Invariants and Higher Representation Theory**

by

**Ben Webster**-

**arXiv**

We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...

(

**7297**views)